Calorie restriction and aging: a life-history analysis.
نویسندگان
چکیده
The disposable soma theory suggests that aging occurs because natural selection favors a strategy in which fewer resources are invested in somatic maintenance than are necessary for indefinite survival. However, laboratory rodents on calorie-restricted diets have extended life spans and retarded aging. One hypothesis is that this is an adaptive response involving a shift of resources during short periods of famine away from reproduction and toward increased somatic maintenance. The potential benefit is that the animal gains an increased chance of survival with a reduced intrinsic rate of senescence, thereby permitting reproductive value to be preserved for when the famine is over. We describe a mathematical life-history model of dynamic resource allocation that tests this idea. Senescence is modeled as a change in state that depends on the resources allocated to maintenance. Individuals are assumed to allocate the available resources to maximize the total number of descendants. The model shows that the evolutionary hypothesis is plausible and identifies two factors, both likely to exist, that favor this conclusion. These factors are that survival of juveniles is reduced during periods of famine and that the organism needs to pay an energetic "overhead" before any litter of offspring can be produced. If neither of these conditions holds, there is no evolutionary advantage to be gained from switching extra resources to maintenance. The model provides a basis to evaluate whether the life-extending effects of calorie-restriction might apply in other species, including humans.
منابع مشابه
Aging, adiposity, and calorie restriction.
CONTEXT Excessive calorie intake and subsequent obesity increases the risk of developing chronic disease and decreases life expectancy. In rodent models, calorie restriction with adequate nutrient intake decreases the risk of developing chronic disease and extends maximum life span. OBJECTIVE To evaluate the physiological and clinical implications of calorie restriction with adequate nutrient...
متن کاملSir2-Independent Life Span Extension by Calorie Restriction in Yeast
Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been p...
متن کاملCalorie restriction - Wikipedia, the free encyclopedia
Calorie restriction (CR), or caloric restriction, or energy restriction, is a dietary regimen that reduces calorie intake without incurring malnutrition or a reduction in essential nutrients. "Low" can be defined relative to the subject's previous intake before intentionally restricting calories, or relative to an average person of similar body type. Calorie restriction without malnutrition has...
متن کاملThe Effect of Peripheral Injection of Leptin on Biomarkers of Aging in Calorie Restricted Rats
Background and Objectives: Calorie restriction (CR) is one of the proven methods of extending lifespan and slowing aging. Leptin is a nutritionally regulated adipokine that has been proposed as a possible key signal in the adaptive responses relevant to CR. Under CR, plasma leptin levels decrease, thus it was hypothesized that leptin administration may counteract CR-induced weight loss. Therefo...
متن کاملRequirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae.
Calorie restriction extends life-span in a wide variety of organisms. Although it has been suggested that calorie restriction may work by reducing the levels of reactive oxygen species produced during respiration, the mechanism by which this regimen slows aging is uncertain. Here, we mimicked calorie restriction in yeast by physiological or genetic means and showed a substantial extension in li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2000